L1 Adaptive Control and Its Transition to Practice
نویسنده
چکیده
The history of adaptive control systems dates back to early 50-s, when the aeronautical community was struggling to advance aircraft speeds to higher Mach numbers. In November of 1967, X-15 launched on what was planned to be a routine research flight to evaluate a boost guidance system, but it went into a spin and eventually broke up at 65,000 feet, killing the pilot Michael Adams. It was later found that the onboard adaptive control system was to be blamed for this incident. Exactly thirty years later, fueled by advances in the theory of nonlinear control, Air Force successfully flight tested the unmanned unstable tailless X-36 aircraft with an onboard adaptive flight control system. This was a landmark achievement that dispelled some of the misgivings that had arisen from the X-15 crash in 1967. Since then, numerous flight tests of Joint Direct Attack Munitions (JDAM) weapon retrofitted with adaptive element have met with great success and have proven the benefits of the adaptation in the presence of component failures and aerodynamic uncertainties. However, the major challenge related to stability/robustness assessment of adaptive systems is still being resolved based on testing the closed-loop system for all possible variations of uncertainties in Monte Carlo simulations, the cost of which increases with the growing complexity of the systems. This talk will give an overview of the limitations inherent to the conventional adaptive controllers and will introduce the audience to the L1 adaptive control theory, the architectures of which have guaranteed robustness in the presence of fast adaptation. Various applications, including flight tests of a subscale commercial jet, will be discussed during the presentation to demonstrate the tools and the concepts. With its key feature of decoupling adaptation from robustness L1 adaptive control theory has facilitated new developments in the areas of event-driven adaptation and networked control systems. A brief overview of initial results and potential directions will conclude the presentation. BIO: Naira Hovakimyan received her MS degree in Theoretical Mechanics and Applied Mathematics in 1988 from Yerevan State University in Armenia. She got her Ph.D. in Physics and Mathematics in 1992, in Moscow, from the Institute of Applied Mathematics of Russian Academy of Sciences, majoring in optimal control and differential games. In 1997 she has been awarded a governmental postdoctoral scholarship to work in INRIA, France. In 1998 she was invited to the School of Aerospace Engineering of Georgia Tech, where she worked as a research faculty member until 2003. In 2003 she joined the Department of Aerospace and Ocean Engineering of Virginia Tech, and in 2008 she moved to University of Illinois at Urbana-Champaign, where she is a professor, university scholar and Schaller faculty scholar of Mechanical Science and Engineering. She has co-authored a book and more than 250 refereed publications. She is the recipient of the SICE International scholarship for the best paper of a young investigator in the VII ISDG Symposium (Japan, 1996), and also the 2011 recipient of AIAA Mechanics and Control of Flight award. Her current interests are in the theory of robust adaptive control and estimation, control in the presence of limited information, networks of autonomous systems, game theory and applications of those in various domains of aerospace, mechanical and biomedical engineering. Drinks will be served at 3:45 p.m. Photo
منابع مشابه
Modified L1 Adaptive Control Design for Satellite FMC Systems with Actuators Time Delay
A modified method for satellite attitude control system in presence of novel actuators is proposed in this paper. The attitude control system is composed of three fluidic momentum controller (FMC) actuators that are used to control Euler angles and their dynamics is considered in satellite attitude equations as well. L1 adaptive control is utilized for satellite three-axial ...
متن کاملExperimental Validation of L1 Adaptive Control: Rohrs’ Counterexample in Flight
The paper presents new results on the verification and in–flight validation of an L1 adaptive flight control system, and proposes a general methodology for verification and validation of adaptive flight control algorithms. The proposed framework is based on Rohrs’ counterexample, a benchmark problem presented in the early 80s to show the limitations of adaptive controllers developed at that tim...
متن کاملUsing the Adaptive Frequency Nonlinear Oscillator for Earning an Energy Efficient Motion Pattern in a Leg- Like Stretchable Pendulum by Exploiting the Resonant Mode
In this paper we investigate a biological framework to generate and adapt a motion pattern so that can be energy efficient. In fact, the motion pattern in legged animals and human emerges among interaction between a central pattern generator neural network called CPG and the musculoskeletal system. Here, we model this neuro - musculoskeletal system by means of a leg - like mechanical system cal...
متن کاملA New Adaptive Load-Shedding and Restoration Strategy for Autonomous Operation of Microgrids: A Real-Time Study
Islanding operation is one of the main features of a MicroGrid (MG), which is realized regarding the presence of distributed energy resources (DERs). However, in order to deal with the control challenges, which an MG faces during island operation, particularly when the transition is associated with certain excessive load, an efficient control strategy is required. This paper introduces a Centra...
متن کاملL1 Adaptive Controller for Nonlinear Reference Systems
In this paper, we consider nonlinear affine-incontrol systems and present the L1 adaptive controller for the case when the performance specifications are defined via a nonlinear system of similar structure. The L1 adaptive controller ensures that the nonlinear, affine-in-control, uncertain system follows its ideal model during the transient and steadystate, if the adaptation gain is selected su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011